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Kepler's �rst law

The �rst Kepler's law might be expressed via a formula, expressing
the distance r between the Sun and its orbiting planet as a function
of the true anomaly θ:

r = r(θ) =
p

1 + e cos θ
, p :=

b2

a
= a

(
1− e2

)
,

where p is the (so-called) semilatus rectum, whereas a and b are
the lengths of semi-major and semi-minor axes, respectively. The
ellipticity of the orbit imposes upon its eccentricity e the condition:
−1 < e < 1.



Kepler's equation

θE

Eccentric and true anomalies

Kepler's equation
calculates the (so-called)
mean anomaly M via the
eccentric anomaly E as

M = E − e sinE .1

We might, as well, calculate the mean anomaly M as a function of
the true anomaly θ as

M = M(θ) = 2 arctan

(√
1− e

1 + e
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(
θ

2

))
− e
√
1− e2 sin θ

1 + e cos θ
,

1
At the end of the Fourth Part of his work �De Motibus Stellae Martis�, Kepler states, according to

a traslation from the Latin [1], concerning the solution of the problem so long known by his name (that
is, concerning the determination of E for a given M): �I am su�ciently satis�ed that it cannot be solved
a priori, on account of the di�erent nature of the arc and the sine. But if I am mistaken, and any one
shall point out the way to me, he will be in my eyes the great Apollonius.�



A formula unifying Kepler's second and third laws

One might verify the equivalence of the two formulas (for the mean
anomaly M) via the accessory identities:

cos θ =
cosE − e

1− e cosE
, sin θ =
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1− e2 sinE
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, tan

(
θ

2

)
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)
.

Now, the second and the third Kepler's laws might be uni�ed (and
strengthened) via a formula for the orbiting time t = t(θ) as

t =

√
a3

µ
M, (1)

where µ is the product of the mass of the Sun with the gravitational
constant.



Kepler's second and third laws (united and strengthened)

Di�erentiating the latter time function t with respect to the true
anomaly θ and taking the reciprocal, we readily calculate θ̇, thereby
deriving a strong version of Kepler's second law as

θ̇ r2 =
√
µ p,

where the dot above denotes di�erentiation with respect to time.

Furthermore, integrating the latter equality, over a full period T ,
readily yields Kepler's third law as

2πab =
√
µ p T =⇒ T = 2π

√
a3

µ
.



The lengths of the four seasons

Moreover, having explicitly expressed t as a function of θ, we might
calculate the lengths of the four seasons on Earth. Assuming
e = 5/299, T = 1461/4 and the value of the true anomaly θ at the
vernal equinox is 3π/7, we calculate the lengths of Winter and
Spring as

t

(
3π

7

)
− t

(
− π

14

)
≈ 88.995, t

(
13π

14

)
− t

(
3π

7

)
≈ 92.765,

respectively. If we maintain the values of the argument θ but �ip
the sign of eccentricity (e 7→ −e), then the two di�erences (upon
evaluating t) would correspond to the lengths of Summer (93.651)
and Autumn (89.839), respectively. Thus, the length of the �polar
night� at the North (South) Pole is 178.83 (186.42).2

2
The Winter at the North Pole does not get nearly as cold as the Summer gets at the South Pole,

as consistently recorded and observed. The length of the �polar night� at the North Pole is over a week
shorter than its length at the South Pole (although the small eccentricity of Earth's orbit makes it visibly
indistinguishably from a circle). No temperature lower than that recorded at Mount McKinley, Alaska
(−73.8 ◦C) was ever recorded at the Northern Hemisphere of Earth. Yet, the lowest temperature ever
directly recorded at ground level on Earth is −89.2 ◦C (184.0 K), which occurred at the Soviet Vostok
Station in Antarctica on July 21, 1983.



Causes of discrepancies

These calculations
closely agree with
the actual lengths
of seasons, which
are subject to
small alterations
which order
of magnitude
matches
the (20 minutes)
discrepancy
between the
tropical and the
sidereal year along
with other lesser components of precession (and nutation) of the
equinoxes, such as the Chandler wobble [2].



The rotating celestial sphere
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