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Abstract. The concept of the generalized arithmetic-geometric mean
(GAGM) embraces both the arithmetic-geometric mean (AGM) and
the modified arithmetic-geometric mean (MAGM) as two special con-
cepts. The GAGM is applied for attaining a unifying formula for cal-
culating complete elliptic integrals (CEI), including those of the third
kind, thereby providing a conceptual basis for their exploration and exact
evaluation, bypassing typical troubles of common software in calculating
CEI. Detailed clarifying examples are provided.
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1 Introduction

The arithmetic-geometric mean (AGM) is the key for attaining a “perfect” for-
mula for calculating complete elliptic integrals (which we shall abbreviate as
CEI whether singular or plural). The first perfect formula for calculating CEI of
the first kind was obtained by Gauss. Aside from conciseness and exactness, it
gave rise to an iterative sequence of intervals, swiftly converging to their com-
mon point. A termination at any step requires no additional calculations of error
estimates, as other (imperfect) formulas usually require, since the exact value is
guaranteed to lie inside its corresponding interval. The same process, based on
Landen transformations, turned out being generalizable to calculating CEI, of
any kind, via a quadratically convergent procedure. Surprisingly, however, the
second perfect formula (possessing all the virtues of the first) for calculating CEI
of the second kind had skipped the attention of all for over two centuries after
discovering the first.1 But only a few additional years were required to attain the
third (general) perfect formula for calculating CEI of the third (or any) kind.
As was the case with the two formulas, preceding it, the general formula gives
rise to an iterative sequence of intervals, quadratically collapsing onto their com-
mon point. And, as before, aside from basic arithmetic operations, only a single
square-root operation is required at each iteration!
1 Leading some to allege (in desperation) that no simple exact formula for calculating

the perimeter of an ellipse existed. Nevertheless, one ought not overestimate the
significance of the second formula which must remain secondary to the first, without
which it could not have been conceived. The two formulas “resonate” one with other,
and the second, borrowing a word from [22], “echoes” the first.
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2 An Historical Overview of Elliptic Integrals

A dramatic struggle for efficiently calculating (complete and incomplete) elliptic
integrals emerged with their inoculation by Fagnano.2 Fagnano’s contribution
[15] to the division of elliptic arcs constitutes a most remarkable and never
fading jewel of mathematics of all time!3 But it even brighter highlighted the
necessity for efficiently calculating CEI, since it clarified how calculating incom-
plete elliptic integrals incessantly depended upon calculating CEI. A break-
through was carried out by Gauss, who recorded the discovery of his unsur-
passable arithmetic-geometric mean (AGM) method for calculating CEI of the
first kind, in his diary on May 30, 1799 [21],4 thereby laying the foundation for
a distinctly novel and superb approach for calculating CEI (of any kind). Nev-
ertheless, a formula as simple and powerful for calculating CEI of the second
kind had to await December 16, 2011 to be discovered! The modified arithmetic-
geometric mean (MAGM), being the necessary concept for attaining the second
formula, turned (moreover) being the basic concept, underlying the general-
ized arithmetic-geometric mean (GAGM), which enabled on September 2, 2015
attaining the third (general) formula for calculating CEI of third (and any)
kind. The generalization of MAGM to GAGM was preceded by constructing
the (so-called) elliptic and coelliptic polynomials for carrying out highly effi-
cient arithmetic on elliptic curves, including division. Earlier, on May 30, 2011,
a canonical fast inverse of the modular invariant was obtained [4], further unrav-
eling a tight relationship between the modular invariant and CEI. Fourteen new
special values of the modular invariant were calculated in 2014, and an infinite
family of identities, called modular polynomial symmetries, were first presented
on April 16, 2014 at the 7th PCA annual conference in St. Petersburg, Rus-
sia, and subsequently represented at a seminar at Moscow State University [6].
A crucial connection between calculating the roots of the modular equation of
level p and calculating the p-torsion points, on a corresponding elliptic curve,
must (surprisingly) be entirely attributed to Galois. Relevant details on Galois’
amazing (yet far from fully appreciated) contribution to elliptic functions (and
integrals) are given in [2,4]. Certainly, the idea, involving the action of the pro-
jective linear group in the main construction of this paper was guided by Galois,5

2 The (highly successful) term “elliptic integral” in and of itself was apparently
invented by Fagnano.

3 According to Fricke [16, Vorwort], the day December 23, 1751 when Euler acknowl-
edged the receipt of Fagnano’s two-volume work was regarded by Jacobi as “the
birthday of the theory of elliptic functions”. On January 27, 1752 Euler, crediting
Fagnano, made his first presentation (to the Berlin Academy of Sciences) on the
addition theorem for elliptic integrals.

4 Strangely, Gauss’ method remained either unknown or unappreciated, until recently,
as pointed out in [23, Appendix O: The Simple Plane Pendulum: Exact Solution]
and further explained in [5].

5 Those overly concerned that Galois’ contribution has ever been overestimated must
rest assured that it was not! Up to these days, Galois’ last letter [17], which he wrote
on the eve of his murder May 30, 1832, remains tragically untangled in spite of all
efforts of those who never underestimated it!
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whose abilities, as rightfully admitted in [18, 2.21. “L’unique” – ou le don de
solitude], far exceeded ours.

3 The Generalized Arithmetic-Geometric Mean

We shall reserve the letter n to denote a natural number, including zero.

3.1 Construction and Definition

The modified arithmetic-geometric sequence was presented in [3,7–9,24]. It is
the recursively defined triple sequence

xn+1 :=
xn + yn

2
, yn+1 := zn +

√
(xn − zn)(yn − zn),

zn+1 := zn −
√

(xn − zn)(yn − zn).

Given such a sequence {xn, yn, zn}∞
n=0, we introduce (another) recursively

defined sequence of (single-valued) parametric functions:6

un+1 = un+1(t) = un+1(t, c, x0, y0, z0) :=
cn un − yn+1 zn+1

cn + un − 2 zn
, cn := un(c),

where c is a fixed real parameter and the function u0 is (naturally) presumed
to coincide with the identity function: u0(t) = t. We proceed to defining the
functions

vn = vn(t) = vn(t, a, c, x0, y0, z0) :=
t − an

t − cn
, an := un(a),

wn = wn(t) = wn(t, b, a, c, x0, y0, z0) :=
vn(t)
vn(bn)

, bn := un(b),

where a and b are (also) fixed real parameters distinct from c and each other.
We shall refer to the sextuple sequence

{xn, yn, zn, an, bn, cn}∞
n=0

as the generalized arithmetic-geometric sequence (abbreviated as GAGS whether
singular or plural).7 The sequence {wn}∞

n=0 is thereby seen as a sequence of
linear fractional (Möbius) transformations, generated by GAGS, successively
mapping the sequence of ordered triples (an, bn, cn)∞

n=0 to the (fixed) ordered
triple (0, 1, ∞).

Define the generalized arithmetic-geometric mean (GAGM) of two (strictly)
positive numbers x and y, for a given pairwise distinct real parameters a, b and
6 The adjective “parametric” is meant to indicate that each such (single-valued) func-

tion (of the argument t) does “depend” upon the (fixed) values of its parameters.
7 Thus, the GAGS is an extended modified arithmetic-geometric sequence, with twice

as many terms.
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c, as the (common) limit of the sequence {ξn := wn(xn)}∞
n=0 and the sequence

{ηn := wn(yn)}∞
n=0 with x0 = x, y0 = y and z0 = 0.

Later on, we extend the domain of the parameters a, b and c to include the
point at (complex) infinity, so that a, b and c might be regarded as elements of
the extended real line R ∪ ∞. However, we shall always require the parameter c
to lie (strictly) outside the closed interval [x, y].8

3.2 Basic Properties

Given a linear function l(t) = λ (t − μ), {λ �= 0, μ} ⊂ R, we define an action of
the function l upon the GAGS as

l · {xn, yn, zn, an, bn, cn}∞
n=0 := {l(xn), l(yn), l(zn), l(an), l(bn), l(cn)}∞

n=0 , (1)

thereby inducing an action upon the sequence {wn}∞
n=0, which we shall denote by

l ·{wn}∞
n=0 := {l ·wn}∞

n=0, where l ·wn is the transformation mapping the ordered
triple (l(an), l(bn), l(cn)) to the ordered triple (0, 1, ∞). One might then verify
that the sequence we have defined, in (1), is indeed a GAGS!9 Furthermore,
neither the sequence {ξn}∞

n=0 nor {ηn}∞
n=0 is altered by this action, that is,

ξn = l · wn

(
l(xn)

)
= wn(xn), ηn = l · wn

(
l(yn)

)
= wn(yn),

so that the GAGM is invariant under the action of linear functions upon the GAGS,
permitting us to speak of equivalence classes ofGAGS. Sowe shall say that aGAGS
is equivalent to another if the GAGM is unaltered. In particular, The homogeneity
degree of GAGM is zero (unlike the AGM and MAGM which are homogeneous of
degree one), and we might exploit this property to extend the domain of GAGM,
for fixed parameters,10 to include (strictly) negative values of the arguments x and
y. At each iteration, we might ensure the positivity of the product (xn − zn)(yn −
zn), before taking its square root, via acting upon the GAGS (at the required step
whenever necessary) by the (constant) function −1.

We shall denote with the same letter N three functions, which we shall nev-
ertheless distinguish by the (total) number of their arguments. The invariance of
the GAGM under the action of linear functions upon the GAGS implies that four
initial arguments suffice to determine the GAGM, so we designate N(x, a, b, c)
to denote the GAGM of 1 and x for parameters a, b and c.11 Moreover, the
expression ( (b − a)N(x, a, b, c)

b − c
− 1

)
/(c − a),

8 This requirement is necessary for the GAGM to be well defined, as we shall soon
find out.

9 Being initiated by the sextuple {l(x0), l(y0), l(z0), l(a0), l(b0), l(c0)}, so (for all
indices n) we have l(x0)n = l(xn), l(y0)n = l(yn), l(z0)n = l(zn), l(a0)n =
l(an), l(b0)n = l(bn), l(c0)n = l(cn).

10 Generally speaking, the parameters might also be regarded as (special) arguments.
11 An equivalence class of any GAGS might be represented by a sequence, where the

initial values y0 and z0 are fixed at 1 and 0, respectively.
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while seemingly dependent upon four arguments x, a, b and c, has x and c
as its only “true” arguments. It actually depends neither upon a nor upon b.
Consequently, we might define a bivariate function

N(x, c) := N(x, ∞, c + 1, c),

and employ it in order to alternatively express the preceding quadrivariate func-
tion as

N(x, a, b, c) =
b − c

b − a

(
(c − a)N(x, c) + 1

)
.

The latter formula extends not only to the case c = 0 but, as well, to the
case c = ∞. In these two (dual) cases the GAGM “degenerates” to a (shifted)
MAGM:

N(x, a, b, 0) =
b

a − b

(
a N

(
1
x

)
− 1

)
, N(x, a, b,∞) =

N(x) − a

b − a
, (2)

where the (univariate) function N(x) is the modified arithmetic-geometric mean
of 1 and x.

The equivalence of the latter two equations reflects a special (limiting) case
of the relation

N(x, a, b, c) = N

(
1
x

,
1
a
,
1
b
,
1
c

)
.12 (3)

3.3 Quadratic Convergence

The difference sequence

dn := ξn − ηn = wn(xn) − wn(yn) =
vn(xn) − vn(yn)

vn(bn)
= sn(xn − yn),

sn :=
(cn − bn)(cn − an)

(bn − an)(cn − xn)(cn − yn)
,

depends upon all the (three) parameters a, b and c, while the ratio

sn+1

sn
=

cn − zn+1

cn − yn+1
=

cn − cn+1

cn+1 − yn+1
=

cn+1 − zn+1

cn − cn+1

12 This relation suggests that the defining equality of the function N(x, c) might be
substituted with the equality

N(x, c) = N

(
1

x
, 0,

1

c + 1
,

1

c

)
,

which is suitable for explicit calculation, and is extendable to the case c = 0 as

N(x, 0) = N

(
1

x

)
,

but, unlike the quadrivariate function, the bivariate function remains undefined for
c = ∞.
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depends upon c but neither upon a nor upon b.13 In order to show that the
GAGM is well-defined we must show that the sequence {dn}∞

n=0 converges to
zero. We already know that it does if c = ∞,14 no matter what a and b are,
since the GAGM for x and y would then coincide with the MAGM of x/(b − a)
and y/(b − a), up to an additive constant a/(b − a). The case when c = 0 might,
as well, be reduced to the case when c = ∞, via identity (3) or by the first of
formulas (2). The case c = z1 = −√

x y would imply (whatever a and b are) that
a1 = b1 = c1 = z1, forcing a termination of the GAGS with d1 = s1 = 0. The
GAGM of x and y would then coincide with the value

ξ1 = η1 =
1
2

(
1 +

a b − x y

(a − b)
√

x y

)
.15

The case c < 0 implies that cn < 0 and 2 cn+1 < cn (for any index n), so∣∣∣∣sn+1

sn

∣∣∣∣ <

∣∣∣∣ cn

cn+1
− 1

∣∣∣∣ < 1 ⇒
∣∣∣∣dn+1

dn

∣∣∣∣ <
xn+1 − yn+1

xn − yn
,

and the GAGM would converge never (at any iteration) slower than the MAGM
does, although unlike either the descending sequence {xn}∞

n=1 or the ascending
sequence {yn}∞

n=1 neither the sequence {ξn}∞
n=0 nor the sequence {ηn}∞

n=0 is
monotone.

The last case, for convergence to be considered, is the case c > 0. The
sequence {cn}∞

n=1 is then descending and, for all n ≥ 1, cn > xn,16 and

dn+1

dn
=

(cn+1 − zn+1)(xn+1 − xn+2)
(cn − cn+1)(xn − xn+1)

≈ xn − xn+1

2 (cn − cn+1)
≈

(
xn−1 − xn

2 (cn−1 − cn)

)2

,

where the sign for approximate equality (≈) must be interpreted here as an
asymptotic (as n approaches infinity) equality. Consequently, the convergence is
eventually (that is, asymptotically) quadratic.17

3.4 Alternative Calculations

The enlisted properties of GAGM enable endlessly many means of calculating
it, but we shall indicate only two more. The first exploits the identity

N(x, a, b, c) = N
(
σ(x, 1), σ(x, a, c), σ(x, b, c), σ(x, c)

)
,

13 Elementary geometric constructions, involving mutually orthogonal circles as sug-
gested in [10], might facilitate deriving the preceding triple-equation.

14 We are alluding to the second formula of (2).
15 The value on the rightmost side might be obtained by applying L’Hôpital’s rule to

either “undeterminate” w1(x1) or w1(y1).
16 The condition that c lies (strictly) outside the closed interval, bounded by x and

y must not be forgotten. We need not, however, require c to lie to the left of that
interval, so c0 need not exceed x0. In other words, the inequality cn > xn need not
apply when n = 0.

17 One might note, as well, that the monotonicity of the sequences {ξn}∞
n=1 and {ηn}∞

n=1

is restored, in this (c > 0) case.
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σ(x, y) := σ(x, y, y), σ(x, y, z) :=
(
√

x + y) (
√

x + z)
2 (y + z)

√
x

,

which allows introducing an abbreviated GAGS for which yn = 1 and zn = 0, for
all n, and

{xn+1 = σ(xn, 1), an+1 = σ(xn, an, cn), bn+1 = σ(xn, bn, cn), cn+1 = σ(xn, cn)} . (4)

The second introduces a truncated GAGS{
xn+1 = σ(xn, 1) =

(√
xn + 1

)2

4
√

xn
, cn+1 = σ(xn, cn) =

(√
xn + cn

)2

4 cn
√

xn

}
,

for which we skip calculating an and bn, but (instead) calculate the GAGM,
recursively, on the basis of the identity

N(x, c) = τ
(
x, c, N

(
σ(x, 1), σ(x, c)

))
, (5)

τ(x, y, z) :=
1

2 y

((
y√
x

−
√

x

y

)
z

4
− 1

)
.

The truncated GAGS is not suitable for calculating the GAGM in the special
case c = 0 or c = ∞ when the GAGM degenerates to MAGM, as given by
formulas (2), but the abbreviated GAGS serves without exceptions. In particular,
we readily infer from the limit formula, with c = ∞,

N(x2, a, b,∞) = N

(
(x + 1)2

4x
,

x + a

2x
,

x + b

2x
, ∞

)

a recursive formula for calculating MAGM:

N
(
x2

)
= x

(
2N

(
f(x)2

) − 1
)

= 2 fn(x)N
(
fn+1(x)2

) −
n∑

k=0

fk(x) ≈

≈ fn(x) −
n−1∑
k=0

fk(x), where

fn(x) := 2n
n∏

k=0

fk(x), fn+1(x) := f(fn(x)), f(x) :=
x + 1
2
√

x
, f0(x) = f0(x) = x.

Of course, we could have defined the GAGM via the abbreviated GAGS, as
given by (4), at the cost of obscuring the origin of GAGM in MAGM.

4 Calculating Three Kinds and Three Types of CEI

Assume, unless indicated otherwise, that β and γ are two positive numbers which
squares sum to one: β2 + γ2 = 1.
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Before we apply GAGM, to calculating CEI, we shall further extend the
domain of its parameters to include complex values, and we lift any remaining
doubt that the GAGM is actually a generalized AGM by observing the identity

N

(
β2, 1 − γ, 1 − γ2

2 + γ
, 1 + γ

)
= N

(
β2, β2 + iβγ, β, β2 − iβγ

)
= M(β), 18 (6)

where i :=
√−1 and M(x) is the AGM of 1 and x. The identity still holds if the

sign of γ, which we shall refer to as the elliptic modulus, is flipped.19

4.1 Three Formulas for Calculating Three Kinds of CEI

A CEI of the first kind I1 is defined and calculated as

I1 = I1(γ) :=
∫ 1

0

dt√
(1 − t2) (1 − γ2 t2)

=
π

2M(β)
. (1799.05.30)

A CEI of the second kind I2 is defined and calculated as

I2 = I2(γ) :=
∫ 1

0

√
1 − γ2t2

1 − t2
=

π N(β2)
2M(β)

. (2011.12.16)

Both formulas (1799.05.30) and (2011.12.16) apply at γ = 0, with I2(0) =
I1(0) = π/2. The second applies, as well, at γ = 1, with I2(1) = 1, as clarified
in [7,8].

A CEI of the third kind I3 is defined and calculated as

I3 = I3(γ, δ) :=
∫ 1

0

dt

(t2 − δ)
√

(1 − t2) (1 − γ2 t2)
= −π γ2 N(β2, 1 − δγ2)

2M(β)
=

=
π N(β2, ∞, β2 − δγ2, 1 − δγ2)

2M(β)
, δ ∈ C\[0, 1]. (2015.09.02)

Put βn+1 :=
√

σ(β2
n, 1) with β0 = β. Thereby, the recursively defined

sequence {βn}∞
n=1 converges descendingly to one, whereas the sequence {γ2

n :=
1 − β2

n}∞
n=1 is a negative sequence, converging ascendingly to zero.20 Define,

recursively, the sequence

δn+1 :=
(1 − δn(1 + βn))2

1 − δnγ2
n

, δ0 = δ.

18 An equivalent GAGS has the initial values x0 = β, y0 = 1/β, z0 = 0, a0 = β + i γ,
b0 = 1, c0 = β − i γ. Note here that if x0 = β and y0 were the values at two (out of
three) half-period of an essential elliptic function, as shown in [10, figures], then a0,
b0 and c0 are its values at three (out of six) quarter-periods.

19 Whereas, flipping the sign of β leads to flipping the sign of M(|β|).
20 Alternatively, we might define the sequence of squares {γ2

n}∞
n=0 recursively by putting

γ2
n+1 := σ(β2

n, −1) with γ0 = γ.
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The recursive relation (5) implies a recursive relation for I3:

I3(γn, δn) = λn

(
I1(γn) +

μn√
βn

I3(γn+1, δn+1)
)

, 21

λn = λ(γn, δn), μn = μ(γn, δn),

λ(γ, δ) :=
γ2

2 (1 − δγ2)
, μ(γ, δ) :=

γ2(γ2δ2 − 2 δ + 1)
(1 − β)2(δγ2 − 1)

,

which, along with the relation
√

βn I1(γn) = I1(γn+1), implies the identity

I3(γ, δ) =
n∑

k=0

ηk I1(γ)+ηn μn I3(γn+1, δn+1)/

√√√√ n∏
k=0

βk, (7)

ηn := λ0

n∏
k=1

μk−1 λk,

exhibiting that for infinitely many values of δ, satisfying (for any n) the relation
δn = 1/(1−βn), the integral I3 would degenerate to a multiple of I1, by the coef-
ficient

∑n
k=0 ηk, as μn vanishes. Identity (7) does not apply at δ = 1/γ2, where

I3 would degenerate to a multiple of CEI of the second kind, by a coefficient
given in the latter of formulas (10). Observe here that the equality δn = 1/γ2

n

implies that λn = μn = ∞. Moreover, the equivalence

δn =
1

1 − βn
⇔ δn+1 =

1
γ2

n+1

holds.
The relations

I3

(
γ,

±1
γ

)
=

γ

2

(
π

2 (γ ∓ 1)
∓ I1(γ)

)
, 22

I3

(
γ,

γ ± i β

γ

)
= − γ

2β

(
(γ ∓ i β)π

2
∓ i I1(γ)

)
,

stemming from (6), would imply that for infinitely many values of δ, satisfying
the relation δ = (γ ± i β)/γ or (for any n) the relation δ2

n = 1/γ2
n, the integral I3

21 An analogous recursive relation for an elliptic integral of the second kind

I2(γ) = 2
√

β I2

(√
σ(β2, −1)

)
− β I1(γ)

is equivalent to formula (2011.12.16).
22 Either the upper or the lower sign must be consistently taken throughout this or

other equations in this paper.
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would degenerate to a “linear combination” of the (ubiquitous) constant π and
I1.23 Two equivalences are in order:

δ2
n =

1
γ2

n

⇔ δn+1 =
γn+1 + i βn+1

γn+1
, δn =

γn ± i βn

γn
⇔ δn+1 =

γn+1 − i βn+1

γn+1
.

Put
δ±(x) :=

1

(1 − √
x )

(
1 + x ± √

x (1 + x)
) .

The preceding (primary) identities for I3 might be applied to deriving two
(secondary) identities, corresponding to δ1 = 1/(1 − β1) and δ1 = 1/γ1,24

respectively:

I3(γ, δ±(β)) =
β − 1

4
√

β3

(
(1 + β)2 ±

√
1 + β

(
1 +

√
β3

))
I1(γ),

I3(γ, δ±(−β)) = ±
√

1 − β

β

(√−β ± √
1 − β

2
(
1 ∓ √

1 − β
)

)2

(
(1 + β)

(
β + 3

√
−β3 −

(
3 (1 − β) + 4

√
−β

) (
1 ∓

√
1 − β

) )
i I1(γ)

+
(
1 +

√
−β3 ∓

√
1 − β (1 + β)

)
π

)
.

4.2 An Unifying Formula for Calculating Three Types of CEI

For a given linear fractional transformation w, determined by three parameters
a, b and c:

w(t) = w(t, a, b, c) :=
(b − c)(t − a)
(b − a) (t − c)

, {a, b, c} ⊂ C ∪ ∞, 25

we might, as well, define a proper CEI I as the integral

I = I(γ, a, b, c) :=
∫ 1

0

w
(
t2

)
dt√

(1 − t2) (1 − γ2 t2)
, (8)

in which we shall distinguish three types. The first type would correspond to
the case when the transformation w has degenerated to a constant map, the
23 We shall avoid specifying the algebraic properties of such “linear combination”,

leaving this (significant) issue to other papers and, perhaps, other authors.
24 Note that the former value (of δ1) is negative (real) and the latter is negative

imaginary.
25 The transformation w need not necessarily be Möbius transformation, since degen-

erate transformations are not (yet) excluded. In other words, the transformation w
need not be a conformal automorphism of either the extended or unextended com-
plex plane, and its determinant (a − b)(b − c)(c − a) is allowed to vanish, be finite
or infinite.
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second type would correspond to the case when w is a linear function,26 whereas
the third type would correspond to the case when w is a linear fractional trans-
formation which does not fix the point at (complex) infinity. Note, however,
that the restriction upon c to be distinct from ∞ does not preclude a CEI from
degenerating to a CEI of the first or the second type as are the instances

I

(
γ, a, b,

1
1 − β

)
=

(1 − b (1 − β)) (1 − a (1 + β)) I1(γ)
2 (b − a)β

, (9)

I

(
γ, a, b,

1
γ2

)
=

1 − b γ2

(b − a) γ2

((
1 − a γ2

)
I2(γ)

β2
− I1(γ)

)
.

In particular, the two special values

I

(
γ, ∞,

2 − β

1 − β
,

1
1 − β

)
= −γ2 I1(γ)

2β
,

I

(
γ, ∞,

γ2 + 1
γ2

,
1
γ2

)
= −

(
γ

β

)2

I2(γ) (10)

coincide with the values of I3 if evaluated at δ = 1/(1 − β) and δ = 1/γ2,
respectively. The former of formulas (10) is, in fact, a special (first) case of
identity (7).27

Whatever the type of I, as defined in (8), we might calculate it directly as

I(γ, a, b, c) =
π N(β2, 1 − a γ2, 1 − b γ2, 1 − c γ2)

2M(β)
, 28 c ∈ C\[0, 1] (11)

so that the case where a = ∞, b = 1 + δ, c = δ is seen as the special case where
I coincided with I3. Identity (6) might now be translated to an identity for π:

I

(
γ, ± 1

γ
,

1
2 ± γ

,∓ 1
γ

)
= I

(
γ,

γ ∓ iβ

γ
,

1
1 + β

,
γ ± iβ

γ

)

= −I

(
γ,

γ ± iβ

γ
,

1
1 − β

,
γ ∓ iβ

γ

)
≡ π

2
. (12)

The identity is extendable (for all involved integrals) to the (limit) value of
the elliptic modulus γ at 0, as well as, it is extendable for the first integral taken
with upper signs to the (limit) value at γ = 1, that is,∫ 1

0

dt√
1 − t2

=
∫ 1

0

2 dt

1 + t2
≡

∫ 1

0

(1 + γ)
(
1 − γ t2

)
dt

(1 + γ t2)
√

(1 − t2) (1 − γ2 t2)
, γ ∈ (0, 1).

26 Recall that the case c = ∞ was not excluded.
27 Yet, even this (first) special case, where I3 degenerates to (a multiple of) I1 for

δ = 1/(1 − β), seems missing from standard sources on elliptic integrals.
28 An equivalent GAGS leading to the GAGM that appears in the numerator has the

initial values x0 = 0, y0 = −1, z0 = −1/γ2, a0 = −a, b0 = −b, c0 = −c.
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However, the second and the third integrals, in identity (12), are discontin-
uous at γ = 1. The upper signs correspond to the value iπ/2, whereas the lower
signs correspond to the value −iπ/2.

We emphasize the methodological significance of a clear unifying formula
(11) for calculating CEI (of any type). “The Handbook of Mathematical Func-
tions” [1, ch. 17] fell short of accomplishing that task, as the section on “The
Process of the Arithmetic-Geometric Mean” was not extended to calculating
elliptic integrals of the third kind, which were left to appear in the next section
of the chapter on “Elliptic Integrals” by Milne-Thomson. The current version
of the latter chapter, written by Carlson [12], is amended with an expressions
for calculating CEI of the third type, via AGM, in the section on “Quadratic
Transformations”, essentially providing yet another (as perfect) alternative for
calculating the sequence ξn, converging to GAGM.29 An enlightening succinct
review of CEI is given in [20]. “Wolfram Mathematica” warns, in [25], that
“more so than for other special functions, you need to be very careful about
the arguments you give to elliptic integrals and elliptic functions” but exhibits
insufficient care in evaluating the integral (8), where non-vanishing imaginary
parts (occasionally!) appear for real parameters. A sample “notebook”, exposing
this and other typical troubles in calculating CEI, by “Mathematica 10.3”,30 is
appended to this article.

4.3 The Formula for Calculating the Complementary CEI

The complementary CEI (denote by J) might as readily be calculated:

J = J(γ, a, b, c) :=
∫ 1/γ

1

w
(
t2

)
dt√

(t2 − 1) (1 − γ2 t2)
=

π N(1/γ2, a, b, c)
2M(γ)

, (13)

c ∈ C\[1, 1/γ].

The integral J , as was the case with I, would also degenerate to a CEI of
the first or second type if w is, respectively, constant or linear. Furthermore,

J

(
γ, a, b,− 1

γ

)
=

1
2

(
1 +

a b γ2 − 1
(a − b) γ

)
I1(β), J(γ, a, b, 0) =

b (a I2(β) − I1(β))
a − b

,

and, in particular,

29 Each sequence element ξn is represented by a partial sum, as was the case with the
(original) expression for calculating CEI of the second kind (given, as well, in the
preceding chapter by Milne-Thomson). These expressions, involving infinite sums,
do (most importantly) provide quadratically convergent procedures but, unlike the
(first) formula for calculating CEI of the first kind, they do not produce a sequence
of intervals, providing both (lower and upper) bounds.

30 That version of “Mathematica” was released on October 15, 2015.
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J

(
γ, ∞,

1
γ

,− 1
γ

)
= I1(β), 31 J(γ, ∞, 1, 0) = I2(β). (14)

We rewrite the latter special case, with c = 0, explicitly as∫ 1/γ

1

dt

t2
√

(t2 − 1) (1 − γ2 t2)
=

π N(γ2)
2M(γ)

,

in order to emphasize that it was not excluded.32

5 Few Explicit Calculations of CEI via GAGM

Before we move on to numerical examples, we explicitly write down the iterative
step for generating a (next) sextuple of the GAGS. It must be preceded by
calculating the (temporary) values r2 = (xn − zn)(yn − zn), r1 =

√
r2, t2 =

z2
n − r2, t1 = 2 zn − cn. Then

(xn+1, yn+1, zn+1, an+1, bn+1, cn+1) =

=
(

xn + yn

2
, zn + r1, zn − r1,

cn an − t2
an − t1

,
cn bn − t2
bn − t1

,
c2
n − t2

cn − t1

)
.

At the terminal step, one calculates

vn(bn) =
bn − an

bn − cn
, vn(xn) =

xn − an

xn − cn
, vn(yn) =

yn − an

yn − cn
,

(ξn, ηn) =
(

vn(xn)
vn(bn)

,
vn(yn)
vn(bn)

)
.

Alternatively, one calculates the (same) values (ξn, ηn) = (wn(xn), wn(1)) as
they emerge from an equivalent abbreviated GAGS,33 as given by (4), although
(as we know) the transformation wn in and of itself is not invariant under linear
actions upon the GAGS.

Now, we shall presume that β = γ = 1/
√

2. Denote, for brevity, the values
M

(√
2

)
and N(2) by M and N , respectively, and put

L :=
π

M
≈ 2.62205755429211981046.34

31 Thus,

J

(
γ,

1

γ
,

1

2 + γ
, − 1

γ

)
= 0.

Note that the arguments of the (complementary) integral J coincide with the argu-
ments of the first integral I from identity (12), taken with the upper signs.

32 The inclusion of this case (c = 0) could not have been made possible had we chosen
the conventional definition of the CEI of the third kind.

33 Recall that for an abbreviated GAGS, yn = 1 for all n.
34 Assuming π is known with sufficient precision, the precision of the latter calculation

is attained after four iterations towards the value of the constant M .
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The constant L was referred to, in [7,8], as the lemniscate constant. It is the
semi-length of the lemniscate of Bernoulli which focal distance is

√
2.35

Firstly, we calculate the first (exceptional) case δ = 1/(1 − β) = 2 +
√

2 of
formula (2015.09.02), via applying (9) or the first of equations (10),

∫ 1

0

dt(
t2 − 2 − √

2
) √

(1 − t2) (1 − t2/2)
= I

(
1√
2
, ∞, 3 +

√
2, 2 +

√
2
)

= −I1

(
1√
2

)
/
√

8 = −L

4
.

Secondly, we calculate two “mutually” complementary CEI, which share the
same absolute value

J

(
1√
2
, ∞, 1, 0

)
= − I

(
1√
2
, ∞, 3, 2

)
= I2

(
1√
2

)
, 36

where the first integral might be calculated via applying the second formula
of (14), while the second integral might be calculated via applying the second
formula of (10). The absolute values of both integrals turn out to coincide with
the value of CEI of the second kind, which might be further evaluated as

I2

(
1√
2

)
=

π N

2
√

2 M
=

L + M

2
√

2
≈ 1.3506438810476755025.34

In other words, the absolute value of either of the aforesaid integrals coincides
with the ratio of the semi-length of the perimeter of the self-complementary
ellipse, as defined in [7,8], to the length of its diameter (that is, its major axis).
The relationship of this ratio with the afore-defined constants M and L stems
from the (central) case of Legendre relation, which was presented by Euler to
the St. Petersburg Academy of Sciences on September 4, 1775 [14].37 Here, we

35 Such lemniscate is inscribed in a cocentered unit circle, as shown in [7,8, Fig. 2].
36 The expression on the leftmost side is attained by applying formula (13) to the

integral J and formula (11) to the integral I. Formula (2015.09.02) also applies at
(the exception case) δ = 1/γ2 = 2.

37 Another remarkable date when the first of two key ideas behind the “Gauss-Euler
algorithm” was presented. Note that the combination of these two outstanding names
is (nevertheless) as exceptionally rare as to require no further specification of the
algorithm for calculating the constant π. Strangely, a few still argue that the term
“Brent-Salamin algorithm” is preferable, being (as it seems to them) less ambiguous,
“since” both names Brent and Salamin are much less frequently heard (than either
Euler or Gauss). These few, including Brent [11], seem unaware that the frequency
with which either the name Euler or Gauss is (separately) associated with so many
methods does not imply that the two names (together) must be nearly as frequently
associated with any other (or same) methods. In fact, Gauss-Euler algorithm is never
confused with any other algorithm (whether or not related to calculating π), so there
is no ambiguity here to be lessened.
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might pause to express this beautiful relation with a marvelously simple and
powerful formula

π =
M2

N − 1
, 38

giving rise to a quadratically convergent algorithm for calculating π.39 Such
formula differs radically from power series representations of π. Combining iter-
ations we might attain convergence to an arbitrarily high order, whereas no
methods exist to accelerate a given linearly convergent algorithm to an algo-
rithm which order of convergence (strictly) exceeds one.40

Thirdly, we calculate the CEI

I3

(
1√
2
,−1

)
=

π N(2, 0, 1, 2/3)√
2 M

≈ 1.273127366749682458.

The precision of the last approximation is attained after the fifth iteration
towards N(2, 0, 1, 2/3) (assuming that π and M are known with sufficient pre-
cision). We list “chopping-off digits” approximations for the corresponding ele-
ments of GAGS:

x1 =
3
2
, y1 =

√
2, z1 = −

√
2, a1 = 3, b1 =

8
5
, c1 =

11
6

,

x2 ≈ 1.4571067811865475244008443621048490392848359,

y2 ≈ 1.4567863831370551039780621988172076268033687,

z2 ≈ −4.2852135078832452015814396472366037839427124,

a2 ≈ 1.5326295766316171593518437666622521421080396,

b2 ≈ 1.4653984421606063564190843656326729981349874,

c2 ≈ 1.4786163382163143732381813974936920788385887,

x3 ≈ 1.4569465821618013141894532804610283330441023,

y3 ≈ 1.4569465799271259366148342272973271159626949,

z3 ≈ −10.027373595693616339777713521770534683848119,

a3 ≈ 1.4570881857430571212719577244909612749313210,

b3 ≈ 1.4569624860227001384221562624104465633839000,

c3 ≈ 1.4569873148583131939298920209737533559017021,

38 This formula made its début in [8].
39 Note that evaluating the square root at each iteration is best done via the quadrati-

cally convergent (so-called) Heron’s method, which amounts to iteratively replacing
a given approximation r of a square root of s by the arithmetic mean of r and s/r.

40 For example, the Chudnovsky famously fast formula, for calculating π, converges
(still) linearly [13].
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x4 ≈ 1.4569465810444636254021437538791777245033986, 41

y4 ≈ 1.4569465810444636253477894912161889487201529,
z4 ≈ −21.511693772431696304903216534757258316416392,
a4 ≈ 1.4569465812955909691425417509597958735013842,
b4 ≈ 1.4569465810726702938839128147996788375690002,
c4 ≈ 1.4569465811167028907128642667070835586747654,

x5 ≈ 1.4569465810444636253749666225476833366117757,

y5 ≈ 1.4569465810444636253749666225476833366117596,

z5 ≈ −44.480334125907856235181399692062199969444545,

a5 ≈ 1.4569465810444636253753615361024413575571484,

b5 ≈ 1.4569465810444636253750109793093234100922159,

c5 ≈ 1.4569465810444636253750802233393765414321542,

as well as, approximations for the corresponding elements of the difference
sequence:

d1 ≈ 0.119398062518129278742, d2 ≈ 0.007245988895557086620,

d3 ≈ 0.000026834417169799896, d4 ≈ 0.000000000368037706275,

d5 ≈ 0.000000000000000000069.

The GAGM is contained in the open interval (η5, ξ5), where

ξ5 ≈ 0.686664556900553064232, η5 ≈ 0.686664556900553064163.

The same difference sequence and the same open interval, containing GAGM,
arises had we calculated the abbreviated equivalent GAGS:

x1 =
4 + 3

√
2

8
, a1 =

2 + 3
√

2
4

, b1 =
5 + 4

√
2

10
, c1 =

12 + 11
√

2
24

,

x2 ≈ 1.0000557990344084608909536718021882886851740,

a2 ≈ 1.0132084978986451044553767711278338098480210,

b2 ≈ 1.0014998361523864412955349417792705697154935,

c2 ≈ 1.0038018034645730876221835149885411210608887,

x3 ≈ 1.0000000001945849073694805774440659743370935,

a3 ≈ 1.0000123303612025542191609858469557610928674,

b3 ≈ 1.0000013850271788806221085830365503548205435,

c3 ≈ 1.0000035470041381927545950431601339276865500,

41 The values x1 through x4 were calculated earlier (with lesser precision) in [8] as
successive approximations of N .
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x4 ≈ 1.0000000000000000000023664553855388570440700,

a4 ≈ 1.0000000000109334875695742133189157444409144,

b4 ≈ 1.0000000000012280512952458860229688472649685,

c4 ≈ 1.0000000000031451258870071434118165041864399,

x5 ≈ 1.0000000000000000000000000000000000000000003,
a5 ≈ 1.0000000000000000000000085967986933596017383,
b5 ≈ 1.0000000000000000000000009655939785168947160,

c5 ≈ 1.0000000000000000000000024729542094121398816. 42

The truncated GAGS does not require calculating an and bn. Instead, the
transformation w5 might be calculated, recursively, as

w5(t) = τ

(
x0, c0, τ

(
x1, c1, τ

(
x2, c2, τ

(
x3, c3, τ

(
x4, c4,

1
t − c5

)))))
,

and so η5 = w5(1) and ξ5 = w5(x5), where the value x5 (and the transformation
w5) is the same whether the GAGS is abbreviated or truncated.

Whatever the case, one ought not confuse the definition of GAGM with the
chosen method for calculating it. On the other hand, one must never forget that
the GAGM might be calculated “independently” of the AGM.43

6 Conclusion

The concept of MAGM enables a “perfect” formula for calculating CEI of the
second kind, as given by (2011.12.16), where a function of single variable (the
elliptic modulus) appears in its numerator. A “perfect” formula for calculating
CEI of the third kind requires constructing a bivariate function. Such function is
constructed by “extending” the concept of MAGM to GAGM, and the formula
for calculating CEI of the third kind is given by (2015.09.02). Moreover, the con-
cept of GAGM permits constructing a quadrivariate function which is necessary
for a general “perfect” formula for calculating any proper CEI, as given by (11).

Acknowledgment and Notification. The author supports an unrestricted access
to knowledge, and grants his permission for using his algorithms and formulas to
persons and non-profit-seeking organizations. Profit-seeking organizations, including
commercial software companies and their representatives, must address the author for
an explicit written permission, without which they are never permitted to use any
formulas, algorithms or methods based on the concept of MAGM or GAGM.

42 In our example, not only xn, but an, bn and cn also converge to 1.
43 So, of course, is the case with the MAGM which might be calculated, without the

AGM, as for determnining the length of a thread in a linear parallel repelling force
field [3,9].
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A Worksheet on Typical Troubles with Calculating CEI
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algebraischen Ausführungen. Teubner, Leipzig (1922)
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